Pengelompokan Jenis Tekstur Kayu Menggunakan K-Nearest Neighbor dan Ekstraksi Fitur Histogram

Dedi Argya Nugroho Effendi, Erna Zuni Astuti

Sari


Kayu  di Indonesia memiliki beraneka macam jenisnya, antara lain kayu jati, bengkirai, glugu, nangka, sengon dan lain sebagainya. Pengelompokan jenis kayu biasanya ditentukan oleh beberapa parameter, diantaranya adalah warna, berat, tekstur, dan masih banyak lagi. Salah satu faktor penting dalam pengelompokan jenis kayu adalah tekstur kayu. Pengelompokan jenis kayu biasanya hanya dapat dilakukan oleh para ahli kayu maupun penjual mebel. Persepsi mata manusia biasanya cenderung subyektif terhadap suatu obyek dalam melakukan pengelompokan. Untuk mengatasi hal ini maka digunakanlah suatu teknologi untuk menganalisis suatu tekstur kayu agar dapat diklasifikasikan ke dalam kelas-kelas tertentu. Oleh karena itu, diperlukan sebuah sistem yang dapat melakukan pendeteksian jenis kayu berdasarkan inputan citra tekstur kayu  sehingga sistem tersebut diharapkan dapat melakukan klasifikasi jenis kayu berdasarkan tekstur. Dari pengklasifikasian jenis kayu menggunakan algoritma k-Nearest Neighbors (KNN) untuk mendapatkan pengelompokan jenis kayu.Pengklasifikasian menggunakan fitur pengukuran jarak, metode pengukuran jarak yang digunakan adalah Cityblock Distance sehingga dapat mengoptimalkan dalam melakukan pengklasifikasian berdasarkan jarak klasifikasi dari data training dan data testing.

Kata Kunci: K-Nearest Neighbor, Klasifikasi Citra Kayu, Cityblock Distance


Teks Lengkap:

PDF

Refbacks

  • Saat ini tidak ada refbacks.


Lembaga Penelitian dan Pengabdian Masyarakat (LPPM) STMIK Tasikmalaya

Copyright © 2019 Jurnal VOI (Voice Of Informatics)

E-ISSN : 2579-3489

Lisensi Creative Commons
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi 4.0 Internasional.